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This paper proposes a nonlinear control strategy to solve the trajectory tracking problem of a tilt-rotor Unmanned Aerial Vehicle
(UAV) when transporting a suspended load. For the present study, the aim of the control system is to track a desired trajectory of
the aircraft with load’s swing-free, even in the presence of external disturbances, parametric uncertainties, unmodeled dynamics,
and noisy position measurements with lower sampling frequency than the controller. The whole system modeling is obtained
through the Euler-Lagrange formulation considering the dynamics of the tilt-rotor UAV coupled to the suspended load. As for
the nonlinear control strategy, an inner-loop control is designed based on input-output feedback linearization combined with the
dynamic extension approach to stabilize the attitude and altitude of the UAV assuming nonlinearities, while an outer-loop control
law is designed for guiding the aircraftwith reduced load swing.The linearized dynamics are controlled using linearmixedH2/H∞

controllers with pole placement constraints. The solution is compared to two simpler control systems: the first one considers the
load as a disturbance to the system but does not avoid its swing; the second one is a previous academic result with a three-level
cascade strategy. Finally, in order to deal with the problem of position estimation in presence of unknown disturbances and noisy
measurements with low sampling frequency, a Linear Kalman Filter with Unknown Inputs is designed for estimating both the
aircraft’s translational position and translational disturbances. Simulation results are carried out to corroborate the proposed control
strategy.

1. Introduction

Research in Unmanned Aerial Vehicles (UAVs) has gained
much attention in the last years, mainly for its variety of
applications. Some examples of uses for UAVs might be
listed as cargo transportation and delivery, surveillance, field
recognition, cave exploration, cinematographic filming, mil-
itary purposes, 3D mapping, search and rescue, and wildlife
research, among many others. The present work focuses on
studying the problem of suspended load transportation. This
kind of task is extremely important in some missions such
as search and rescue, surface exploration, military applica-
tions, and personal assistance, among others. Piloted aircraft
usually require an experienced pilot to transport suspended
payloads to a destinationwhile avoiding any accidentwith the
load and the aircraft itself. Fully autonomous UAVs, on the
other hand, are required to use more sophisticated control

laws so as to achieve similar (or even better) performan-
ces.

The most common UAVs that are studied in academia
are helicopters, quadrotors, and fixed-wing airplanes. On
one hand, rotorcrafts have the advantage over airplanes for
performing Vertical Take-Off and Landing (VTOL), while on
the other hand, airplanes are able to obtain higher forward
flights with greater range and autonomy. Aiming to combine
the advantages of both kinds of aircraft, present research
on UAVs is increasingly interested in the tilt-rotor UAV, a
hybrid copter-plane aircraft.The tilt-rotor is a type of aircraft
that combines the vertical lift capacity of helicopters with
the range, autonomy, and speeds of fixed-wing airplanes.
For missions of search and rescue, for example, tilt-rotors
might stand out since it can reach disaster zones faster than
rotorcrafts, while also being able to hover over some position
of interest.
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This work proposes a robust nonlinear control strategy
for the tilt-rotor UAV in the helicopter flight-mode with the
further requirement that it should track a desired trajectory
carrying a suspended load. Furthermore, the control system
should maintain both the aircraft and the load stable even in
the presence of external disturbances, parametric uncertain-
ties, unmodeled dynamics, and noisy positionmeasurements
with lower sampling frequency than the controller.

The most notorious research works assessing control of
tilt-rotor UAVs started being published after 2005. In [1] a
back-stepping strategy was applied to a tilt-rotor with two
degrees of freedom on each rotor. The use of two degrees of
freedom was later abandoned due to difficulties on practical
implementation. Reference [2] was able to experimentally
maintain a tilt-rotor in hovering using nonlinear control in
the vicinity of the equilibrium point. In [3] an adaptation to
the previous solution was performed by including coupling
gyroscopic body effects on the system’smodel used for control
design. Reference [4] explored the use of gain-scheduling to
control a tilt-rotor’s roll and pitch by choosing a vast number
of linearization points, with results being presented in [5]. A
nonlinear control of a tilt-rotor UAV was proposed in [6] by
means of cascade control using feedback linearization over
a numerical model of the aircraft obtained on wind-tunnel
tests. The work of [7] presented an approach to control a
tilt-rotor UAV using Fuzzy Logic Control. In [8], a Model
Predictive Control (MPC) was designed for the attitude of
the aircraft. Reference [9] derived a simplifiedEuler-Lagrange
model for the tilt-rotor UAV and used it to design a back-
stepping control strategy. In [10], linear H∞ and mixed
H2/H∞ controllers were designed based on LMI (Linear
Matrix Inequality) approach for trajectory tracking of a tilt-
rotor UAV in helicopter flight-mode. In order to cover a large
range of forward velocity of a tilt-rotorUAV, a robust adaptive
mixing control strategy was proposed in [11].

Regarding the load transportation control problem,many
research works are found in the literature. Nonlinear con-
trollers were introduced in [12, 13] for stabilization of sus-
pended loads in crane operations. Quadrotor UAV was used
in [14] to transport a suspended load from one desired
point to another applying a machine learning approach to
avoid load swing. Reference [15] also used a quadrotor UAV
to stabilize the swing of a suspended load with unknown
mass by combining a Proportional-Derivative controller with
Retrospective Cost Adaptive Control. In [16], trajectories are
generated to a quadrotorUAV so that a suspended load passes
through a desired trajectory.

Some works also address the problem of load trans-
portation using a tilt-rotor UAV. In [17, 18], MPC strategies
based on linearized models around desired trajectories were
proposed for trajectory tracking of a tilt-rotor UAV with
reduced load’s swing. In [19], the trajectory tracking problem
of the suspended load was solved through the design of
control and state estimation strategies based on linearized,
time-invariant state-space equations but did not allow yaw
angle tracking, or the occurrence of changes in the load’s
mass and rope’s length. This latter work was improved in
[20], where an MPC based on a linear time-varying model
was designed to perform trajectory tracking of the suspended

load with stabilization of the tilt-rotor UAVwhen parametric
uncertainties and external disturbances affect the load, the
rope’s length and total system mass vary during taking-off
and landing, and the desired yaw angle changes throughout
the trajectory. Nevertheless, the above control strategies,
developed to solve the load transportation problem using a
tilt-rotor UAV, are based on linearized models, which limit
the domain of attraction of the closed-loop control system.
In order to improve that, a nonlinear cascade control strategy
was proposed in [21, 22] for trajectory tracking of a tilt-rotor
UAV with load’s swing-free. Although this control strategy
enlarged the domain of attraction, this nonlinear solution
used a three-level cascade strategy, which might not be very
attractive from the control point of view, since outer-loops
are capable of destabilizing inner-loops if the design is not
properly tuned.

This paper improves the results presented in [21, 22],
in which the position of the aircraft was assumed to be
perfectly known, by proposing a two-level cascade strategy,
reducing computational costs and attaining a solution whose
nonlinear controllers are simpler to tune due to lower number
of cascaded loops. Each level of the cascade system executes
a control law through the method of input-output feedback
linearization (IOFL), which constantly linearizes the system
so that linear control design techniques can be applied. In
summary, the work in [21, 22] uses two loops to control
altitude and attitude, while this work achieves the same in
a single loop by using a dynamic extension approach for
controlling these variables by actuating on their snaps. The
external loop presented in this paper performs trajectory
tracking for translational motion while reducing the load’s
swing. Besides, the proposed control strategy is designed
based on a detailed whole-body dynamic model of the tilt-
rotor UAV using the Euler-Lagrange formulation.

Some model simplifications are assumed in the control
design, neglecting some dynamic cross coupling between
generalized coordinates. These assumptions can be close
to reality if the system’s angular velocities and generalized
acceleration are not very high, which is acceptable when
the tilt-rotor UAV operates in the helicopter flight-mode. In
order to deal with those neglected terms, mixed H2/H∞

controllers with pole placement constraints are designed
based on the linearized dynamicswith the addition of integral
terms, featuring robustness against unmodeled dynamics and
constant disturbance rejection, while guaranteeing satisfac-
tory time response.

In order to solve the problem of position and speed
estimation in presence of unknown disturbances and noisy
measurementswith low sampling frequency, a LinearKalman
Filter with Unknown Inputs (LKFUI) is designed for esti-
mating the aircraft’s translational position and speed and the
corresponding disturbances. It assumes that the position is
actually measured by a positioning system (e.g., GPS, vision
system) equipment with sampling time 𝑇𝑠 > 𝜏𝑠, where𝜏𝑠 is the controller sampling time. The estimator evaluates
the position of the aircraft when no new measurements
are available from the sensor, also taking into account its
measurement uncertainty. The estimator also considers that
the aircraft’s motion may be affected by disturbances (e.g.,
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wind), which are not usually measured. The designed esti-
mator is based on the formulation proposed by [23], which
presents a generalized approach to Kalman Filters called
Gain-ConstrainedKalman Filtering inwhich both LKFUI and
LKF are particular solutions.

The proposed control system performance is evaluated
through simulation results and compared to a simpler con-
troller, whose design considers the load as a disturbance to
the system but does not avoid its swing, and to the three-level
cascade strategy proposed in [22].

The remainder of the paper is structured as follows:
Section 2 presents the whole-body modeling of the tilt-rotor
UAV with suspended load; Section 3 presents the proposed
control structure describing the design of the aforementioned
nonlinear control system with the linear mixed H2/H∞

controllers. In addition, an estimationmodel for the system is
presented in order to develop the LKFUI algorithm; Section 4
shows simulation results; and, finally, Section 5 concludes this
paper and provides suggestions of future works.

Notation. Let →i ≜ [1 0 0]𝑇, →j ≜ [0 1 0]𝑇, →k ≜ [0 0 1]𝑇
be the unit vectors in the direction of the 𝑥-, 𝑦-, and 𝑧-axes,
respectively, of a proper reference frame 𝐴; R𝐵

𝐴 represents
the rotation matrix from frame 𝐴 to frame 𝐵; R𝑖,𝜑 expresses
the rotation matrix of an angle 𝜑 around axis 𝑖; the vector
𝜔𝐵𝐵𝐴(𝑡) ∈ R3 denotes an angular velocity of frame 𝐵 with
respect to frame 𝐴 represented in frame 𝐵; S(p) is the skew
symmetric matrix related to the vector p ∈ R3. Let 𝑟𝑖
denote the relative degree of a system’s output ℎ𝑖;Lfℎ𝑖 is the
Lie derivative operation. Let the state vectors x, x𝑘 denote
the value of the states at sampling instant 𝑘, x̂𝑘 being their
estimated values; y𝑘 contains the values measured at instant𝑘, while ŷ𝑘 represents the estimation of the same vector; x̂𝑘|𝑘−1
denotes the fact that x at instant 𝑘 has been predicted using
measured information up to instant 𝑘−1. Let𝑇𝑠 and 𝜏𝑠 be two
different sampling times with 𝑇𝑠 > 𝜏𝑠 and 𝑇𝑠/𝜏𝑠 an integer;
x̂𝑖,𝑘 (𝑖 = 0, 1, 2, . . . , 𝑇𝑠/𝜏𝑠) denotes the estimated states of the
system 𝑖⋅𝜏𝑠 seconds after the instant given at x̂𝑘|𝑘, where index 𝑖
represents increments in the controller’s cycles, while index 𝑘
represents sampling instants of sensors. A complementary list
of nomenclature is provided in the Section “Nomenclature.”

2. Tilt-Rotor UAV with Suspended
Load Modeling

This section presents the whole-body dynamic modeling of
the tilt-rotor UAV with suspended load using the Euler-
Lagrange formulation. The multibody system is composed
of four rigid bodies (see Figure 1): the main body (carbon-
fiber structure, landing gear, battery, and electronic devices);
two thrusters groups, one on each side of the aircraft (tiltable
mechanisms with rotors), connected to the main body by a
revolute joint; and the suspended load, which is assumed to
be attached to the main body via a rigid rod with negligible
mass. The following coordinate frames used in the system
modeling are defined as (see Figure 1) a fixed inertial frame
I, a moving frame B rigidly attached to the main body, a
frame C1 rigidly attached to the main body’s center of mass,

framesC2 andC3 rigidly attached to the rotation axes of the
right and left tiltable mechanisms, respectively, and a frame
C4 rigidly attached to the suspended load’s center of mass.

2.1. Kinematics. TheUAV’s attitude with respect to the frame
B is described by Euler angles around the local axes with
the roll-pitch-yaw convention 𝜂 = [𝜙 𝜃 𝜓]𝑇. In addition,
RI
B represents the rotation matrix from frame B to I. The

translation between the origins of framesI andB is repre-
sented by 𝜉 = [𝑥I 𝑦I 𝑧I]𝑇, while dB𝑖 = [𝑑B𝑥𝑖 𝑑B𝑦𝑖 𝑑B𝑧𝑖 ]𝑇
is the translation between the origins of frames B and C𝑖,
for 𝑖 = 1, 2, 3, 4. In addition, note that dB1 , d

B
2 , and dB3

are all constants, while dB4 varies due to the suspended load
degrees of freedom (DOF). Also, this model assumes that𝑑B𝑥2 = 𝑑B𝑥3 = 0; that is, the rotors are aligned with frameB in
the 𝑥 direction (see Figure 1).

The vector dB4 can be calculated through a parametriza-
tion that considers the suspended load by a cable as a simple
pendulum, fromwhich a weight (the load) is connected to the
aircraft via a massless rigid rod of length 𝑙, and two degrees
of freedom represented by 𝛾1 and 𝛾2 (rotations around 𝑥B
and 𝑦B, respectively). The Forward Kinematic Model of the
pendulum subsystem with respect to the aircraft’s body is
given by dB4 = RB

C4
(−𝑙→k ), where RB

C4
= R𝑦,𝛾2

R𝑥,𝛾1
is the load’s

attitude with respect to frameB.
In addition, frame C1, which is rigidly attached to the

main body’s center of mass, is assumed parallel to frame
B, leading to RB

C1
= I3×3. As for the rotors’ attitudes, the

rotation matrices are obtained by RB
C2

= R𝑥,−𝛽R𝑦,𝛼𝑅
and

RB
C3

= R𝑥,𝛽R𝑦,𝛼𝐿
, 𝛼𝑅, 𝛼𝐿 being the right and left tilting angles,

respectively. Moreover, 𝛽 is a small fixed tilt angle of the
rotors toward the origin ofB and dependent of the aircraft’s
mechanical design (see Figure 1). The introduction of 𝛽
improves the controllability for this kind of VTOL aircraft,
although the thrust efficiency is decreased [24].

Finally, the position of a point rigidly attached to frame
C𝑖 with respect to the inertial frameI is obtained as

pI𝑖 = RI
B (RB

C𝑖
pC𝑖𝑖 + dB𝑖 ) + 𝜉, 𝑖 = 1, 2, 3, 4. (1)

The generalized coordinates vector is given by q =
[𝜉𝑇 𝜂𝑇 𝛼𝑇 𝛾𝑇]𝑇 ∈ R10, where 𝛼 = [𝛼𝑅 𝛼𝐿]𝑇 and 𝛾 =
[𝛾1 𝛾2]𝑇.
2.2. Equations of Motion. This section derives the Euler-
Lagrange equations of motion for the tilt-rotor UAV with
suspended load. In these equations the exogenous forces
are separated into dissipative viscous friction forces and
unknown external disturbances. Thus, the equations of
motion are written as

M (q) q̈ + C (q, q̇) q̇ + G (q) = F (q) + Fext + Fdrag, (2)

whereM(q) ∈ R10×10 is the inertia matrix, C(q, q̇) ∈ R10×10

is the Coriolis and centripetal forces matrix obtained using
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Figure 1: Tilt-rotor UAV frames and variables definition.

the Christoffel symbols of the first kind, G(q) ∈ R10 is the
gravitational force vector, F(q) ∈ R10 is the independent
generalized input force vector, Fext ∈ R10 is the external
disturbances vector, and Fdrag ∈ R10 is the generalized drag
force vector.Thedrag forces are assumed to be proportional to
the generalized velocities and are given by Fdrag = −𝜇q̇, with
𝜇 ∈ R10×10 being a diagonal constant matrix. Consequently,
(2) can be rewritten as

M (q) q̈ + [C (q, q̇) + 𝜇] q̇ + G (q) = F (q) + Fext. (3)

The inertia matrix can be found by calculating the
system’s kinetic energy and expressing it in the form 𝐾 =(1/2)q̇𝑇M(q)q̇. The kinetic energy of the whole system is
given by the sum of the individual kinetic energies of each
body 𝐾 = ∑4

𝑖=1𝐾𝑖, where the kinetic energy of the 𝑖th body
can be obtained from the volume integral [25]

𝐾𝑖 (q) = 12 ∫𝑉𝑖 𝜌𝑖 (k
I
𝑖 )𝑇 (kI𝑖 ) d𝑉𝑖, (4)

with𝜌𝑖 themass density at body 𝑖.The vector kI𝑖 is the velocity
of a point of body 𝑖 with respect to frame I and is given by
the time derivative of (1):

ṗI𝑖 = ṘI
B (RB

C𝑖
pC𝑖𝑖 + dB𝑖 )

+ RI
B (ṘB

C𝑖
pC𝑖𝑖 + RB

C𝑖
ṗC𝑖𝑖 + ḋB𝑖 ) + �̇�.

(5)

Points pC𝑖𝑖 are rigidly attached to their respective frames,
leading to ṗC𝑖𝑖 = 03×1 for 𝑖 = 1, 2, 3, 4. Translations dB𝑖 for𝑖 = 1, 2, 3 are constant, resulting in ḋB1 = ḋB2 = ḋB3 = 03×1.
Moreover, since the body’s frame B is fixed with respect to
its center of mass’ frameC1, then ṘB

C1
= 03×3.

With use of properties for skew symmetric matrices
(S(p)q = S(q)𝑇p, S(𝑎p + 𝑏q) = 𝑎S(p) + 𝑏S(q), and S(Rp) =
RS(p)R𝑇; besides, Ṙ𝐴

𝐵 (𝑡) = R𝐴
𝐵 (𝑡)S(𝜔𝐵𝐵𝐴(𝑡)).), equation (5) can

be rewritten for each body in the form

ṗI1 = RI
BRB

C1
S (pC11 )𝑇 (RB

C1
)𝑇𝜔BBI

+ RI
BS (dB1 )𝑇𝜔BBI + �̇�, (6)

ṗI𝑖 = RI
BRB

C𝑖
S (pC𝑖𝑖 )𝑇 (RB

C𝑖
)𝑇𝜔BBI

+ RI
BS (dB𝑖 )𝑇𝜔BBI + RI

BRB
C𝑖
S (pC𝑖𝑖 )𝑇𝜔C𝑖C𝑖B

+ �̇�; 𝑖 = 2, 3,
(7)

ṗI4 = RI
BRB

C4
S (pC44 )𝑇 (RB

C4
)𝑇𝜔BBI

+ RI
BS (dB4 )𝑇𝜔BBI + RI

BRB
C4
S (pC44 )𝑇𝜔C4

C4B

+ RI
BḋB4 + �̇�.

(8)

Assuming that all the system’s bodies are symmetric and
each frame C𝑖 coincides with the center of mass of the𝑖th body, then ∫

𝑉𝑖
𝜌𝑖pC𝑖𝑖 d𝑉𝑖 = 03×1. Using this property

and substituting (6)–(8) into (4), the kinetic energies of the
system’s bodies are found to be 𝐾1 = 𝑋

1, 𝐾2 = 𝑋
2 + 𝑌2,𝐾3 = 𝑋

3 + 𝑌3, and 𝐾4 = 𝑋
4 + 𝑌4 + 𝑍

4, where 𝑋
𝑖 , 𝑌𝑖 , and𝑍

𝑖 are given by

𝑋
𝑖 = 12𝑚𝑖�̇�

𝑇
�̇� − 𝑚𝑖�̇�

𝑇
RI
BS (dB𝑖 )𝜔BBI

+ 12 (𝜔BBI)𝑇 J𝑖𝜔BBI,
(9)



www.manaraa.com

Journal of Advanced Transportation 5

𝑌𝑖 = (𝜔BBI)𝑇RB
C𝑖
I𝑖𝜔

C𝑖
C𝑖B

+ 12 (𝜔C𝑖C𝑖B)
𝑇
I𝑖𝜔

C𝑖
C𝑖B

, (10)

𝑍
𝑖 = (𝜔BBI)𝑇𝑚𝑖S (dB𝑖 ) ḋB𝑖 + 12 (ḋB𝑖 )𝑇𝑚𝑖ḋ

B
𝑖

+ �̇�𝑇𝑚𝑖R
I
BḋB𝑖 ,

(11)

with 𝑚𝑖 the mass of the 𝑖th body, I𝑖 ≜ ∫ S(pC𝑖𝑖 )𝑇S(pC𝑖𝑖 )d𝑚 the
inertia tensor of the 𝑖th body with respect to frame C𝑖, and
J𝑖 ≜ RB

C𝑖
I𝑖(RB

C𝑖
)𝑇 +𝑚𝑖S(dB𝑖 )𝑇S(dB𝑖 ) the inertia tensor of body𝑖 expressed in frameB (Steiner’s theorem [26]).

In order to represent the kinetic energy as a function
of the generalized coordinates, the following mappings are
applied

𝜔BBI = [[[
[

1 0 −𝑠𝜃0 𝑐𝜙 𝑠𝜙𝑐𝜃0 −𝑠𝜙 𝑐𝜙𝑐𝜃
]]]
]
[[[
[

̇𝜙
̇𝜃

�̇�
]]]
]
= W𝜂�̇�, (12)

𝜔
C4
C4B

= [[[
[

1 0
0 𝑐𝛾10 −𝑠𝛾1

]]]
]
[ ̇𝛾1̇𝛾2] = W𝛾�̇�, (13)

ḋB4 = [[[
[

𝑙𝑠𝛾1𝑠𝛾2 −𝑙𝑐𝛾1𝑐𝛾2𝑙𝑐𝛾1 0
𝑙𝑠𝛾1𝑐𝛾2 𝑙𝑐𝛾1𝑠𝛾2

]]]
]
[ ̇𝛾1̇𝛾2] = L𝛾�̇�, (14)

𝜔
C2
C2B

= �̇�𝑅→j , (15)

𝜔
C3
C3B

= �̇�𝐿→j , (16)

with 𝑐𝑥 ≜ cos(𝑥) and 𝑠𝑥 ≜ sin(𝑥).
Then, the inertia matrixM(q) can be written as

M (q)

=
[[[[[[[[[[
[

𝑚I3×3 RI
BHW𝜂 03×1 03×1 𝑚4RI

BL𝛾
∗ W𝑇

𝜂 JW𝜂 m23 m24 m25

∗ ∗ →j 𝑇I2→j 0 01×2

∗ ∗ ∗ →j 𝑇I3→j 01×2∗ ∗ ∗ ∗ m55

]]]]]]]]]]
]

, (17)

where the ∗ terms indicate symmetry with respect to the
main diagonal, 𝑚 = ∑𝑚𝑖, J = ∑ J𝑖, H = −S (∑𝑚𝑖dB𝑖 ),
m23 = W𝑇

𝜂R
B
C2
I2
→j ,m24 = W𝑇

𝜂R
B
C3
I3
→j ,m25 = W𝑇

𝜂R
B
C4
I4W𝛾+𝑚4W𝑇

𝜂S(dB4 )L𝛾, andm55 = 𝑚4L𝑇𝛾L𝛾 +W𝑇
𝛾 I4W𝛾.

The gravitational force vector G(q) is obtained by cal-
culating G(q) = 𝜕𝑃/𝜕q, where 𝑃 = ∑4

𝑖=1 𝑃𝑖 is the sum
of the potential energies of the individual bodies given by
𝑃𝑖 = ∫

𝑉𝑖
𝜌𝑖(gI)𝑇pI𝑖 d𝑉𝑖, with gI = −𝑔𝑧→k the gravity vector

with respect to the inertial frame. Assuming again that all the

system’s bodies are symmetric and each frame C𝑖 coincides
with the center of mass of the 𝑖th body, then ∫

𝑉𝑖
𝜌𝑖pC𝑖𝑖 d𝑉𝑖 =

03×1 and the potential energy of the whole system is given by

𝑃 = − (gI)𝑇 [RI
B( 4∑

𝑖=1

𝑚𝑖dB𝑖 ) + 𝑚𝜉] . (18)

The generalized force vector F(q) =
[(TI

𝜉 )𝑇 (𝜏I𝜂 )𝑇 𝜏𝑇𝛼 𝜏𝑇𝛾 ]𝑇 is composed of all translational
forces 𝑇𝑖 and rotational torques 𝜏𝑘 performing actuation on
the system’s generalized coordinates. In order to calculate
TI
𝜉 , it is necessary to decompose the force provided by each

propeller along frameB

FB𝑅 = RB
C2

→
k𝑓𝑅 = r𝑅𝑓𝑅, (19)

FB𝐿 = RB
C3

→
k𝑓𝐿 = r𝐿𝑓𝐿, (20)

where 𝑓𝑅 and 𝑓𝐿 are the right and left propeller thrusts,
respectively. By defining FB = FB𝑅 + FB𝐿 , the translational
forces expressed in the inertial frame are then given by

TI
𝜉 = RI

BFB = [RI
Br𝑅 RI

Br𝐿] [𝑓𝑅𝑓𝐿] . (21)

The aircraft’s rotational torques are obtained by adding
the torque generated by the thrust of the propellers to the
torque caused by the drag of the propellers. The drag torque
generated by each propeller is assumed in steady-state and
given by 𝜏drag = (𝑘𝜏/𝑏)𝑓, where 𝑘𝜏 and 𝑏 are estimated
aerodynamic constants, and 𝑓 is the vertical thrust of the
given propeller. Thus, the main body’s rotational torques
expressed in the inertial frame are written as

𝜏I𝜂

= W𝑇
𝜂

[[[[[[
[

−𝑐𝛼𝑅𝑐𝛽𝑑𝑦 − 𝑘𝜏𝑏 𝑠𝛼𝑅 𝑐𝛼𝐿𝑐𝛽𝑑𝑦 + 𝑘𝜏𝑏 𝑠𝛼𝐿
𝑠𝛼𝑅𝑑𝑧 + 𝑘𝜏𝑏 𝑐𝛼𝑅𝑠𝛽 𝑠𝛼𝐿𝑑𝑧 + 𝑘𝜏𝑏 𝑐𝛼𝐿𝑠𝛽
𝑠𝛼𝑅𝑑𝑦 + 𝑘𝜏𝑏 𝑐𝛼𝑅𝑐𝛽 −𝑠𝛼𝐿𝑑𝑦 − 𝑘𝜏𝑏 𝑐𝛼𝐿𝑐𝛽

]]]]]]
]
[𝑓𝑅𝑓𝐿]

= W𝑇
𝜂 [𝜏R 𝜏L] [𝑓𝑅𝑓𝐿] ,

(22)

where 𝑑𝑦 = |𝑑B𝑦2| = 𝑑B𝑦3 and 𝑑𝑧 = 𝑑B𝑧2 = 𝑑B𝑧3.
Finally, defining 𝜏𝛼 = [𝜏𝛼𝑅 𝜏𝛼𝐿]𝑇, the input generalized

force vector can be expressed in an input-affine form

F (q) =
[[[[[[
[

RI
Br𝑅 RI

Br𝐿 03×2
W𝑇

𝜂𝜏R W𝑇
𝜂𝜏L 03×2

02×1 02×1 I2×2
02×1 02×1 02×2

]]]]]]
]
[[
[
𝑓𝑅𝑓𝐿
𝜏𝛼

]]
]
= B (q) Γ, (23)

where Γ = [𝑓𝑅 𝑓𝐿 𝜏𝛼𝑅 𝜏𝛼𝐿]𝑇 is the system’s input vector.
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Figure 2: Nonlinear feedback linearization cascade control strategy.

Remark 1. By considering the dynamics of the tiltable mech-
anisms into the tilt-rotor UAV modeling, the equations of
motion become affine in the control input, in which the
torques applied to tiltable mechanisms, 𝜏𝛼𝑅 and 𝜏𝛼𝐿 , are used
to manipulate their angular positions. In opposite to this
assumption, someworks [1–3, 9] consider these angular posi-
tions as control inputs, which lead to high nonlinear coupling
in the input mapping, besides neglecting the mentioned
dynamics, which have considerable time scale.

2.3. State-Space Representation of the System. The state-space
representation of the Euler-Lagrange’s dynamic equations (3),
assuming the state vector x(𝑡) = [𝑥1 ⋅ ⋅ ⋅ 𝑥20]𝑇 = [q𝑇 q̇𝑇]𝑇,
can be written as

ẋ = [ q̇
q̈
]

= [ q̇

M−1 [B (q) Γ + Fext − [C (q, q̇) + 𝜇] q̇ − G (q)]] ,
= F (x, Γ, Fext) ,
= f (x) + g𝑢 (x) Γ + g𝑑 (x)Fext.

(24)

3. Control Strategy Design

This section presents the proposed robust nonlinear control
strategy to solve the load transportation problem using a
tilt-rotor UAV. The goal of the control design is to perform
trajectory tracking of coordinates 𝑥, 𝑦, 𝑧, and 𝜓, while
ensuring stability of the remaining generalized coordinates,
which includes the stabilization of the load. The strategy
is based on a cascade scheme as shown in Figure 2. The
inner-loop control law actuates in Γ and is designed by
using the input-output feedback linearization (IOFL)method
combined with the dynamic extension technique in order
to control altitude, 𝑧, and attitude, 𝜂 = [𝜙 𝜃 𝜓]𝑇, also
ensuring stability of the tilting angles 𝛼𝑅 and 𝛼𝐿. The outer-
loop actuates on the references of 𝜙 and 𝜃 in order to ensure
trajectory tracking of the planar position 𝑥 − 𝑦, whereas an
additional control term is derived to stabilize the load angles
(𝛾1 and 𝛾2) with reduced swing.

When designing linear controllers for the linearized
blocks, the performances of coordinates𝑥,𝑦, 𝑧,𝜙, 𝜃, and𝜓 are
achieved through PID-like controllers, ensuring trajectory
tracking in presence of constant disturbances, unmodeled
dynamics, and parametric uncertainties. As for 𝛾1 and 𝛾2,
their derivatives with respect to the aircraft are controlled by
using PI-like controllers.

Furthermore, for control design purposes, some hypothe-
ses are considered on the equations of motion (3) of the tilt-
rotor UAV with suspended load, from which some DOF are
assumed uncoupled and considered as unmodeled dynamics.
These dynamics decoupling assumptions can be close to real-
ity if the system’s angular velocities (the three first columns
of the Coriolis Matrix have only zero terms, implying that
translational velocity does not affect the dynamics of the
remaining generalized coordinates) and generalized accelera-
tion are small. Nevertheless, these kind of uncertainties must
be compensated by the control system.Therefore, in order to
compensate them and, additionally, provide good transient
response, the linear controllers’ gains are obtained by the
mixed H2/H∞ synthesis with pole placement constraints.
The following assumptions are considered:

(A1) Let dB1 = 03×1 (center of mass of the main body
is in its geometric center), 𝑚2 = 𝑚3 (mass of both
rotors are the same), and dB2 = [0 𝑑B𝑦2 0]𝑇 = −dB3 ;
then H = −S(𝑚4𝑑B4 ). In addition, assuming that𝑚4 ≪ 𝑚 = ∑𝑚𝑖, then the inertia matrix’s term
m12 = RI

BHW𝜂 ≈ 03×3.

(A2) The coupling between the altitude dynamics (𝑧-
dynamics) and the load motion is assumed to be
negligible; that is,m15 ≈ [→i →j 03×1]m15.

(A3) The coupling between the attitude dynamics
and the tilting angles dynamics is assumed to be
negligible; that is,m23 ≈ 03×1 and𝑚24 ≈ 03×1.

(A4)The coupling between the attitude dynamics and
the load motion is also assumed to be negligible; that
is,m25 ≈ 03×2.

From these assumptions, (3) can be split into two uncou-
pled equations of motion: (i) one representing the dynamics
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for q1 = [𝑧 𝜂𝑇 𝛼𝑇]𝑇, and (ii) another representing q2 =
[ 𝑥 𝑦 𝛾𝑇]𝑇:

Mq1 q̈1 + Cq1 q̇1 + Gq1 = Bq1Γ − 𝜇q1 q̇1 + 𝛿q1 , (25)

Mq2 q̈2 + Cq2 q̇2 + Gq2 = Bq2Γ − 𝜇q2 q̇2 + 𝛿q2 , (26)

where Mqi = IqiMI𝑇qi , Cqi = IqiCI
𝑇
qi , Gqi = IqiGqi , Bqi =

IqiB, 𝜇qi = Iqi𝜇I
𝑇
qi , and 𝛿qi is a vector including unmodeled

dynamics and the unknown external disturbances Fext, 𝑖 ∈{1, 2}, with
Iq1 = [06×2 I6×6 06×2] , (27)

Iq2 = [I2×2 02×6 02×2
02×2 02×6 I2×2

] . (28)

The state-space representations of (25)-(26) will be denoted
as ẋ𝑞𝑖 = f𝑞𝑖(x𝑞𝑖) + g𝑢𝑞𝑖(x𝑞𝑖)Γ + g𝑑𝑞𝑖(x𝑞i)𝛿qi .

Additionally, in order to deal with a more realistic
scenario, it is assumed that the translational variables are not
available during all controller’s sampling time. Therefore, the
problem of state estimation for the translational position and
speed of the aircraft arises, in which it is assumed that the
remaining state-space variables are known. It considers that
the position is actually measured by a positioning system
(e.g., GPS, vision system) equipment with sampling time 𝑇𝑠,
while the controller has a sampling time 𝜏𝑠, with 𝜏𝑠 < 𝑇𝑠
and assuming 𝑇𝑠/𝜏𝑠 ∈ N+. Moreover, velocity is assumed to
be measured throughout a sensor based in visual odometry
with same sampling frequency as the positioning system.
Therefore, the estimatormust evaluate the position and speed
of the aircraft when no new measurements are available
from the sensors, also taking into account their measurement
uncertainty. In order to be more realistic, the estimator
must also consider that the aircraft’s motion may be affected
by disturbances (e.g., wind gusts), which are not usually
measured.

State estimation algorithms typically rely on knowing
all the inputs that affect a system; otherwise the estimates
become biased due to the unknown input parameters. In
order to estimate states with unknown inputs, the technique
Linear Kalman Filter with Unknown Inputs (LKFUI) is used.
Unlike classic Linear Kalman Filter (LKF) [27], the LKFUI
[28] can deal with problems involving unknown inputs such
as disturbances.

3.1. Inner-Loop Control Design. In this section the proposed
IOFL control law is designed for controlling system (25)
considering the systems’ outputshq1(x𝑞1) = [𝑧 𝜙 𝜃 𝜓]𝑇 and
the system’s inputs Γ = [𝑓𝑅 𝑓𝐿 𝜏𝛼𝑅 𝜏𝛼𝐿]𝑇.

Recall that the relative degree 𝑟𝑖 of a system’s output ℎ𝑖
is exactly the number of times one has to differentiate ℎ𝑖 in
order to have at least one component of the vector input Γ
explicitly appearing. It is computed by 𝑟𝑖 = (inf 𝑘, ∃𝑗, 1 ≤ 𝑗 ≤4,Lg𝑗L

𝑘−1
f ℎ𝑖), whereLfℎ𝑖 is the Lie derivative operation and

g𝑗 is the 𝑗th column of g𝑢𝑞1(x𝑞𝑖). It is possible to verify that 𝑟𝑖 =

2, ∀𝑖 ∈ {1, 2, 3, 4} (this statement can be trivially understood
due to the fact that �̈�, ̈𝜙, ̈𝜃, and �̈� are all function of at least
one input Γ𝑖 for arbitrary 𝛼𝑅 and 𝛼𝐿), which implies that this
set of inputs/outputs are not fully feedback linearizable, since𝑟 = ∑ 𝑟𝑖 = 8 and the system has twelve state variables (q1 and
q̇1).

Since it is only possible to regulate on a desired value the
number of outputs equal to the number of control inputs,
and the time-derivatives �̈�, ̈𝜙, ̈𝜃, and �̈� are all affected only
by the control inputs 𝑓𝑅 and 𝑓𝐿 (see (23)), and none by the
torques 𝜏𝑅 and 𝜏𝐿, it is required to delay the appearance of 𝑓𝑅
and 𝑓𝐿 to higher order time-derivatives of 𝑧, 𝜙, 𝜃, and 𝜓 in
order to allow the other control inputs to appear. Therefore,
the present problem can be solved by using the dynamic
extension technique, in which the state vector of the system
is extended by setting 𝑓𝑅 and 𝑓𝐿 equal to the output of two
double integrators and, then, the state variables 𝑥13 = 𝑓𝑅,𝑥14 = ̇𝑓𝑅, 𝑥15 = 𝑓𝐿, and 𝑥16 = ̇𝑓𝐿 are included. The new
system’s inputs are defined as Γ = [ ̈𝑓𝑅 ̈𝑓𝐿 𝜏𝛼𝑅 𝜏𝛼𝐿]𝑇. Thus,

the new state vector is xq1 = [q𝑇1 q̇𝑇1 𝑥13 𝑥14 𝑥15 𝑥16]𝑇,
and the state-space equations can be rewritten as

ẋ𝑞1 = f𝑞1 (x𝑞1) +
4∑
𝑖=1

g𝑖 (x𝑞1) Γ𝑖 + g𝑑𝑞1 (x𝑞1) 𝛿q1 ,
yFL = hq1 (x𝑞1) = [𝑧 𝜙 𝜃 𝜓]𝑇 ,

(29)

where f𝑞1(x𝑞1) = [q̇𝑇1 q̈𝑇1 𝑥14 0 𝑥16 0]𝑇, q̈1 = M−1
q1 (−[Cq1+

𝜇q1]−Gq1)+B1𝑥13+B2𝑥15, Γ𝑖 is the 𝑖th element of the system’s
input vector Γ, g𝑖(x𝑞1) is given by

g1 = [[
[
013×11
02×1

]]
]
, (30)

g2 = [015×11 ] , (31)

g3 = [[
[
06×1
B3
04×1

]]
]
, (32)

g4 = [[
[
06×1
B4
04×1

]]
]
, (33)

and B𝑖 is the 𝑖th column of Bq1 , 𝑖 ∈ {1, 2, 3, 4}. Note that
the control inputs 𝑓𝑅 and 𝑓𝐿 of system (24) are not anymore
control inputs for the extended system (29), being now state
variables. Additionally, it improves the capability of the inner-
loop controller to deal with external disturbances.

Computing the relative degree 𝑟𝑖 for the new system, it
is now possible to verify that 𝑟𝑖 = 4, ∀𝑖 ∈ {1, 2, 3, 4}. This
only holds provided the condition that the terms of the inertia
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matrixm23 = m24 = 0. If this was not true, then the coupling
between 𝜂 and 𝛼 would imply that it is physically possible to
actuate on attitude angles by Newton’s action-reaction when
applying torques to rotate the propellers. Even though this is
mathematically attainable, this is not the form of actuation
desired for the conception of a tilt-rotor aircraft. Therefore,
the system’s relative degree is 𝑟 = ∑ 𝑟𝑖 = 16, whichmeans that
the system is now fully feedback linearizable.Thus, in order to
apply IOFL techniques, the following needs to be calculated:

Δ (x𝑞1) ∈ R
4×4: Δ𝑖𝑗 (x𝑞1) = Lg𝑗L

3

fℎ𝑖 (x𝑞1) , (34)

b (x𝑞1) ∈ R
4×1: b𝑖 (x𝑞1) = L

4

fℎ𝑖 (x𝑞1) , (35)

where Δ𝑖𝑗(x𝑞1) is the element of the 𝑖th row and 𝑗th column of
Δ(x𝑞1) and b𝑖(x𝑞1) is the 𝑖th row of b(x𝑞1).

Then, the following control law may be applied

Γ = Δ−1 (kq1 − b) , (36)

where kq1 = [V𝑧 V𝜙 V𝜃 V𝜓]𝑇 is the additional control input.
The matrix Δ(x𝑞1) has full-rank on the neighborhood of the
system’s equilibrium point, implying that

....

hq1 (x𝑞1) = kq1 + 𝜋1 (𝛿q1) , (37)

with 𝜋1(𝛿q1) a function of the residual terms due to model
simplifications, unmodeled dynamics, and unknown external
disturbances

Therefore, it is then possible to apply linear techniques
to obtain the additional control law in order to regulate
the outputs 𝑧, 𝜙, 𝜃, and 𝜓. These variables are controlled
by Proportional-Integral-Derivative- (PID-) like controllers
with feed-forward term. This choice, together with a desired
faster closed-loop time response, allows assuming the steady-
state behavior of the inner-loop as unitary gain at themoment
of tuning the outer-loop controllers. Moreover, the variables𝑧, 𝜙, 𝜃, and 𝜓 are required to track desired trajectories when
constant external disturbances and modeling errors affect
the system. Thus, the linear control laws compounding the
additional control input vector, kq1 , are designed as

V𝑧 = ....𝑧Ref + 𝐾𝑑𝑑𝑑𝑧

...𝑒𝑧 + 𝐾𝑑𝑑𝑧
̈𝑒𝑧 + 𝐾𝑑𝑧

̇𝑒𝑧 + 𝐾𝑝𝑧
𝑒𝑧

+ 𝐾𝐼𝑧
∫ 𝑒𝑧d𝑡, (38)

V𝜙 = ....𝜙Ref + 𝐾𝑑𝑑𝑑𝜙

...𝑒𝜙 + 𝐾𝑑𝑑𝜙
̈𝑒𝜙 + 𝐾𝑑𝜙

̇𝑒𝜙 + 𝐾𝑝𝜙
𝑒𝜙

+ 𝐾𝐼𝜙
∫ 𝑒𝜙d𝑡,

(39)

V𝜃 = ....𝜃Ref + 𝐾𝑑𝑑𝑑𝜃

...𝑒𝜃 + 𝐾𝑑𝑑𝜃
̈𝑒𝜃 + 𝐾𝑑𝜃

̇𝑒𝜃 + 𝐾𝑝𝜃
𝑒𝜃

+ 𝐾𝐼𝜃
∫ 𝑒𝜃d𝑡, (40)

V𝜓 = ....𝜓Ref + 𝐾𝑑𝑑𝑑𝜓

...𝑒𝜓 + 𝐾𝑑𝑑𝜓
̈𝑒𝜓 + 𝐾𝑑𝜓

̇𝑒𝜓 + 𝐾𝑝𝜓
𝑒𝜓

+ 𝐾𝐼𝜓
∫ 𝑒𝜓d𝑡,

(41)

where 𝑒𝑖 = (𝑖 − 𝑖Ref ) with 𝑖 ∈ {𝑧, 𝜙, 𝜃, 𝜓}, and ....𝑧Ref , ....𝜙Ref ,....𝜃Ref , and ....𝜓Ref are feed-forward terms due to the time-varying
reference.

The above control laws will be synthesized using the
mixedH2/H∞ control technique with pole placement con-
straints in order to ensure reference tracking for the variables𝑧, 𝜙, 𝜃, and 𝜓, while 𝛼𝑅 and 𝛼𝐿 are stabilized.
3.2. Outer-Loop Control Design. The outer-loop IOFL con-
troller is designed in order to control the subsystem (26) by
actuating on the references of roll,𝜙Ref , and pitch, 𝜃Ref , angles.
Moreover, an additional control term is considered to reduce
the load swing.

From (23), the generalized control input vector of sub-
system (26) can be rewritten as Bq2Γ = [𝑇I

𝑥 𝑇I
𝑦 0 0]𝑇. The

variables 𝑇I
𝑥 and 𝑇I

𝑦 are, respectively, the translational forces
along𝑥 and𝑦 expressed in the inertial frame and are obtained
from

[𝑇I
𝑥

𝑇I
𝑦

] = [[
[
→i 𝑇
→j 𝑇

]]
]
RI
B (FB𝑅 + FB𝐿 )

= [𝑟11 𝑟12 𝑟13𝑟21 𝑟22 𝑟23] (F
B
𝑅 + FB𝐿 ) ,

(42)

where 𝑟𝑖𝑗 is the element of RI
B located at the 𝑖th line and 𝑗th

column. From FB𝑅 + FB𝐿 = [𝑓B
𝑥 𝑓B

𝑦 𝑓B
𝑧 ]𝑇, the actuation

approach in this part of the design is performed by changing
the projection of 𝑓B

𝑧 along 𝑥I and 𝑦I. In other words,
the roll (𝜙) and pitch (𝜃) angles need to be changed so as
to obtain the desired projections of 𝑓B

𝑧 along 𝑥I and 𝑦I.
Besides, the projections of 𝑓B

𝑥 and 𝑓B
𝑦 along the inertial

frame are assumed as known disturbances which should be
compensated by the controller.

First, in order to perform the feedback linearization
approach and design an additional linear control input, from
(26) and (42), the vector of dynamics to be canceled nq2 =
[𝑛𝑥 𝑛𝑦 𝑛𝛾1 𝑛𝛾2]𝑇 is defined as

nq2 = [Cq2 + 𝜇q2] q̇2 + Gq2 − Fq2 , (43)

where Fq2 = [𝑟11𝑓B
𝑥 + 𝑟12𝑓B

𝑦 𝑟21𝑓B
𝑥 + 𝑟22𝑓B

𝑦 0 0]𝑇. Con-
sequently, subsystem (26) can be rewritten as

Mq2 q̈2 +
[[[[[
[

𝑛𝑥𝑛𝑦𝑛𝛾1𝑛𝛾2

]]]]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

nq2

=
[[[[[[
[

(𝑠𝜓𝑠𝜙 + 𝑐𝜓𝑠𝜃𝑐𝜙) 𝑓B
𝑧

(𝑠𝜓𝑠𝜃𝑐𝜙 − 𝑐𝜓𝑠𝜙) 𝑓B
𝑧0

0

]]]]]]
]
+ 𝛿q2 . (44)

By inspecting (44), it is not trivial to obtain a nonlinear
state-space representation affine in the control inputs 𝜙Ref
and 𝜃Ref . To solve this problem, which will allow applying the
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IOFL technique, and assuming that vector of dynamics nq2 is
known, one can define the intermediary input values Υ1 andΥ2 and state the following nonlinear set of equations:

(𝑠𝜓𝑠𝜙 + 𝑐𝜓𝑠𝜃𝑐𝜙) 𝑓B
𝑧 − 𝑛𝑥 = Υ1,

(𝑠𝜓𝑠𝜃𝑐𝜙 − 𝑐𝜓𝑠𝜙) 𝑓B
𝑧 − 𝑛𝑦 = Υ2. (45)

As the term 𝑓B
𝑧 is obtained from the inner-loop controller,

which has a faster settling time than the outer one, for the
outer-loop control design, this variable is assumed as a time-
varying parameter. Furthermore, since the roll (𝜙) and pitch
(𝜃) angles are controlled variables of the inner-loop, they
can be written with respect to their error and reference as𝑒𝜙 = (𝜙 − 𝜙Ref ) and 𝑒𝜃 = (𝜃 − 𝜃Ref ). Therefore, being the
inner-loop controller in charge of carrying these errors to
zero, and assuming that the yaw (𝜓) angle is measurable, (45)
can be written with respect to 𝜙Ref and 𝜃Ref , whose solutions
are given by

𝜙Ref = arcsin[𝜎(𝑠𝜓 (Υ1 + 𝑛𝑥) − 𝑐𝜓 (Υ2 + 𝑛𝑦)𝑓B
𝑧

)] ,

𝜃Ref = arcsin[𝜎(𝑐𝜓 (Υ1 + 𝑛𝑥) + 𝑠𝜓 (Υ2 + 𝑛𝑦)𝑓B
𝑧 𝑐𝜙Ref )] ,

(46)

where 𝜎(𝑝) is a saturation function that avoids the arcsin
operation from becoming undefined and is given by 𝜎(𝑝) =
min(1,max(−1, 𝑝)) (the function min(𝑎, 𝑏) returns the min-
imum value between 𝑎 and 𝑏 and max(𝑐, 𝑑) returns the
maximum value between 𝑐 and 𝑑).

By replacing the transformation (45) in (44), (26) is
reduced to

Mq2 q̈2 + nq2 = Υq2 + 𝛿q2 , (47)

where nq2 = [0 0 𝑛𝛾1 𝑛𝛾2]𝑇 and Υq2 = [Υ1 Υ2 0 0]𝑇.
Since (47) is affine in the intermediary input vectorΥq2 , IOFL
techniques can be used to linearize this subsystem.

Then, by choosing the outputs hq2(x𝑞2) = [𝑥 𝑦]𝑇,
matrices Δ(x𝑞2) and b(x𝑞2) can be computed so as to apply
a control law similar to the one in (36) leading to

ḧq2 (x𝑞2) = kq2 + 𝜋2 (𝛿q2) , (48)

where kq2 = [V𝑥 V𝑦]𝑇. Consequently, it is possible to control
the aircraft’s motion along 𝑥I and 𝑦I, while 𝛾1 and 𝛾2
compose the internal dynamics.

Therefore, linear controllers are designed taking into
account themotion of the load expressed in the inertial frame.
First, the vector dIBC4

= RI
BdB4 = [𝑑I𝑥 𝑑I𝑦 𝑑I𝑧 ]𝑇 is defined

as the translation between frameB and the load expressed in
frameI.Then, the reference for the load variation is given as
[ ̇𝑑I𝑥 ̇𝑑I𝑥 ]𝑇 = [0 0]𝑇. Note that dB4 is the vector that goes
from the origin of frameB to the origin of frameC4. Hence,
ḋB4 is the relative velocity between the origins of frames
B and C4. That is, the objective is to avoid load swinging

speed regardless of its position with respect to the aircraft. In
order to accomplish this task, PID-like controllers for the 𝑥𝑦
motion with additional PI-like control terms to regulate the
load’s speed with respect to the tilt-rotor are applied:

V𝑥 = �̈�Ref + 𝐾𝑑𝑥
̇𝑒𝑥 + 𝐾𝑝𝑥

𝑒𝑥 + 𝐾𝐼𝑥
∫ 𝑒𝑥d𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥-motion

+ 𝐾𝑝𝑑𝑥
̇𝑑I𝑥 + 𝐾𝐼𝑑𝑥

∫ ̇𝑑I𝑥 d𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
load swing

, (49)

V𝑦 = ̈𝑦Ref + 𝐾𝑑𝑦
̇𝑒𝑦 + 𝐾𝑝𝑦

𝑒𝑦 + 𝐾𝐼𝑦
∫ 𝑒𝑦d𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑦-motion

+ 𝐾𝑝𝑑𝑦
̇𝑑I𝑦 + 𝐾𝐼𝑑𝑦

∫ ̇𝑑I𝑦 d𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
load swing

,
(50)

where �̈�Ref and ̈𝑦Ref are feed-forward terms due to the time-
varying reference.

When tuning parameters of controllers (49) and (50), it
is again important to bear in mind that this strategy assumed
null coupling between 𝑥, 𝑦, 𝛾1, and 𝛾2 and the remaining vari-
ables, which is incorporated into the residual terms, 𝜋2(𝛿q2).
Again, in order to synthesize the controllers’ gains providing
good transient response and disturbance attenuation, the
mixedH2/H∞ synthesis with pole placement constraints is
employed.

3.3. Robust Mixed H2/H∞ Control Design. After applying
the input-output feedback linearization procedure to both
inner and outer loops, the additional control inputs (38)–(41)
and (49)-(50) are synthesized using the mixedH2/H∞ tech-
nique with pole placement constraints [11]. These linearized
dynamics can be written as

ė𝑖 = A𝑖e𝑖 + B𝑢𝑖 ũ𝑖 + B𝜋𝑖𝜋𝑖,
z𝑖 = C𝑧𝑖

e𝑖 +D𝑢𝑧𝑖
ũ𝑖 +D𝜋𝑧𝑖

𝜋𝑖,
ũ𝑖 = K𝑖e𝑖,

(51)

where e𝑖 = [∫ 𝑒𝑖𝑑𝑡 𝑒𝑖 ̇𝑒𝑖 ̈𝑒𝑖 ...𝑒𝑖]𝑇 and K𝑖 = [𝐾𝐼𝑖
𝐾𝑝𝑖

𝐾𝑑𝑖
𝐾𝑑𝑑𝑖𝐾𝑑𝑑𝑑𝑖

] with 𝑖 ∈ {𝑧, 𝜙, 𝜃, 𝜓} for the inner-loop, e𝑖 =
[∫ 𝑒𝑖𝑑𝑡 𝑒𝑖 ̇𝑒𝑖]𝑇 and K𝑖 = [𝐾𝐼𝑖

𝐾𝑝𝑖
𝐾𝑑𝑖

] with 𝑖 ∈ {𝑥, 𝑦} for the
𝑥𝑦-motion, and e𝑖 = [∫ ̇𝑑I𝑖 𝑑𝑡 ̇𝑑I𝑖 ]𝑇 andK𝑖 = [𝐾𝐼𝑑𝑖

𝐾𝑝𝑑𝑖
]with𝑖 ∈ {𝛾1, 𝛾2} for the term in charge of load’s swing. MatricesA𝑖,

B𝑢𝑖 , B𝜋𝑖 are defined with proper dimensions, and C𝑧𝑖
, D𝑢𝑧𝑖

,
D𝜋𝑧𝑖

are weighting matrices.
The optimal H∞ controller asymptotically stabilizes the

linear system and minimizes the H∞ norm, ‖H𝜋𝑖𝑧𝑖
(𝑠)‖∞ =

sup(𝜎H𝜋𝑖𝑧𝑖
(𝑠)), where H𝜋𝑖𝑧𝑖

(𝑠) is the transfer function
between the external disturbance 𝜋𝑖 and the cost variable zi.
Applying Parseval’s theorem to theH∞ norm, defined in the
frequency domain, it results in ‖zi‖2 ≤ ‖H𝜋𝑖𝑧𝑖

(𝑠)‖∞‖𝜋i‖2,
in which minimizing the H∞ norm minimizes the system
disturbance effect. Solving the H∞ optimization problem,
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the linear system is asymptotically stable with H∞ norm
bounded by ‖H𝜋𝑖𝑧𝑖

(𝑠)‖∞ < √𝛾∗, where 𝛾∗ is the optimal
value.

Considering again system (51) with D𝜋𝑧𝑖
= 0,H2 control

problem leads to an optimal controller thatminimizes theH2

norm ‖hi(𝑡)‖2 = ∫∞
0

h2i (𝑡)𝑑𝑡 for hi(𝑡) = L−1{H𝜋𝑖𝑧𝑖
(𝑠)}. The

minimization of this norm implicates in the optimal transient
response of the system.Therefore, themixedH2/H∞ control
approach is formulated by finding an optimalH∞ norm and
using 𝛾 > 𝛾∗ to solve the H2 problem maintaining the H∞

constraints, providing the advantage of a smallH∞ normand
a better transient response.

In addition, to ensure pole placement constraints, the
closed-loop poles must be within a defined convex region in
the complex plane (𝐷-stability). An LMI region is defined as a
subsetD of the complex planeC, whereD is given byD = {𝑠 ∈
C: L+𝑠M+𝑠∗M𝑇 < 0}, where L = L𝑇 andM arematrices that
define region D, 𝑠 = 𝜎 + 𝑗𝜔, and 𝑠∗ is the complex conjugate

of 𝑠 [29]. In this work the following regions are used: (R1)
Re(𝑠) < −𝛼, which is defined by 𝑠 + 𝑠∗ < −2𝛼, given that𝑠+𝑠∗ = 𝜎+𝑗𝜔+𝜎−𝑗𝜔 = 2𝜎.Therefore, it is possible to rewrite
this expression in the form 2𝛼 + 𝑠 + 𝑠∗ < 0 and then L = 2𝛼
and M = 1; (R2) is a disk centered at (𝑐, 0) with radius 𝑟, in
which L = [ −𝑟 −𝑐−𝑐 −𝑟 ] andM = [ 0 10 0 ]; and (R3) is a cone defined
by |Im(𝑠)| < tan(𝜑)|Re(𝑠)|, from which the matrices L andM
are given as L = [ 0 00 0 ] and M = [ sin(𝜑) cos(𝜑)

−cos(𝜑) sin(𝜑) ]. According
to [29], a closed-loop state matrix A + BK is 𝐷-stable if and
only if there exists a real definite positive symmetric matrix
Q ∈ R𝑛×𝑛 such that L ⊗Q +M ⊗ V +M𝑇 ⊗ V𝑇 < 0, where ⊗
is the Kronecker product operator, and V = (AQ + BY) with
K = YQ−1.

Thus, the robust mixed H2/H∞ control problem with
pole placement constraints is formulated for each linearized
system (51) through the following optimization problem
subject to linear matrix inequalities assuming 𝛾 = 𝛾:

min tr (N𝑖) ,
s.t. Q𝑖 > 0 (52)

H2 constraints
{{{{{{{
[
[

N𝑖 (C𝑧𝑖
+D𝑢𝑧𝑖

K𝑖)Q𝑖

Q𝑖 (C𝑧𝑖
+D𝑢𝑧𝑖

K𝑖)𝑇 Q𝑖

]
]
> 0,

Q𝑖A𝑇
𝑖 + A𝑖Q𝑖 + Y𝑇

𝑖 B
𝑇
𝑢𝑖
+ B𝑢𝑖Y𝑖 + B𝜋𝑖B

𝑇
𝜋𝑖
< 0,

(53)

H∞ constraints
{{{{{{{
[[[
[

Υ B𝜋i Q𝑖C𝑇
𝑧𝑖
+ Y𝑇

𝑖 D
𝑇
𝑢𝑧𝑖∗ −𝛾I𝑛𝑤𝑖 D𝑇

𝜋𝑧𝑖∗ ∗ −𝛾I𝑛𝑧𝑖
]]]
]
< 0, (54)

Region R1 → 2𝛼Q + AQ +QA𝑇 + BY + Y𝑇B𝑇 < 0, (55)

Region R2 → {[ −𝑟Q −𝑐Q + AQ + BY

−𝑐Q +QA𝑇 + Y𝑇B𝑇 −𝑟Q ] < 0, (56)

Region R3 → {{{
[
[
𝑠𝜑 (AQ +QA𝑇 + BY + Y𝑇B𝑇) 𝑐𝜑 (AQ −QA𝑇 + BY − Y𝑇B𝑇)
𝑐𝜑 (−AQ +QA𝑇 − BY + Y𝑇B𝑇) 𝑠𝜑 (AQ +QA𝑇 + BY + Y𝑇B𝑇)]]

< 0, (57)

where Υ = A𝑖Q𝑖 +Q𝑖A𝑇
𝑖 + B𝑢𝑖Y𝑖 + Y𝑇

𝑖 B
𝑇
𝑢𝑖
, Y𝑖 = K𝑖Q𝑖, and the∗ term indicates symmetry.

Remark 2. Region R1 guarantees that the system is faster
than aminimum requirement. RegionR2, in turn, avoids the
poles from being allocated too far away from the origin of the
plane, avoiding high gains in the controller. RegionR3 limits
the system’s maximum percentage overshoot.

3.4. State Estimation Using the Linear Kalman Filter with
Unknown Inputs. As stated previously, the system has two
different sampling times (controller and positioning system).
Then, in order to design the state estimator, two state-space
equations are formulated distinguishing both sampling times.

For the controller’s sampling time 𝜏𝑠, we consider a stochastic
linear discrete-time dynamic system of the form

x𝑖,𝑘 = Ax𝑖−1,𝑘 + Bu𝑖−1,𝑘 + Gd𝑖−1,𝑘 + w𝑖−1,𝑘,
y𝑘 = Cx𝑘 + k𝑘, (58)

where A ∈ R𝑛×𝑛, B ∈ R𝑛×𝑝, G ∈ R𝑛×𝑠, and C ∈ R𝑚×𝑛 are
known matrices, in which 𝑛 is the number of states of the
system, 𝑝 is the number of known inputs, 𝑠 is the number
of unknown inputs, and 𝑚 is the number of outputs. It is
assumed that for all 𝑖, 𝑘 ≥ 1 the input u𝑖−1,𝑘 ∈ R𝑝 is
known. The process noise w𝑖−1,𝑘 ∈ R𝑛 is assumed to be
white, Gaussian, zero-mean, and mutually independent with
knowndiagonal covariancematrixQ. Besides, the outputs are
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measured by the sensors, in which the measurement noise
k𝑘 ∈ R𝑚 is also assumed to be white, Gaussian, zero-mean,
and mutually independent with known diagonal covariance
matrix R𝑘. x𝑖,𝑘 ∈ R𝑛 is the state vector, which should be
estimated. The initial state vector x0,0 ∈ R𝑛 is assumed to
have Gaussian distribution with initial estimate x̂0,0 and error
covarianceP𝑥𝑥0,0 ≜ E[(x0−x̂0,0)(x0−x̂0,0)𝑇], whereE[⋅] denotes
expected value.

Since the model in (58) uses sampling time 𝜏𝑠, these
equations can be used iteratively to predict the system’s
states for sampling time 𝑇𝑠. Thus, in order to predict x̂𝑘|𝑘−1
given x̂𝑘−1|𝑘−1 and all the inputs u𝑖,𝑘−1 and d𝑖,𝑘−1 for 𝑖 =1, . . . , 𝑇𝑠/𝜏𝑠, this prediction can be calculated by finding
x̂𝑖=𝑇𝑠/𝜏𝑠 ,𝑘. Therefore, defining ℎ = 𝑇𝑠/𝜏𝑠, when estimating the
states at an instant 𝑘 given information up to time 𝑘 − 1 the
following state-space equations are used:

x̂𝑘|𝑘−1 = A𝑇𝑠
x̂𝑘−1|𝑘−1 + B𝑇𝑠

→u 𝑘−1 + G𝑇𝑠

→
d 𝑘−1

ŷ𝑘 = Cx̂𝑘|𝑘−1,
(59)

where A𝑇𝑠
= Aℎ, B𝑇𝑠 = [Aℎ−1B ⋅ ⋅ ⋅ B], G𝑇𝑠

=
[Aℎ−1G ⋅ ⋅ ⋅ G], →u 𝑘−1 = [u𝑇1,𝑘−1 ⋅ ⋅ ⋅ u𝑇ℎ,𝑘−1]𝑇, and →

d 𝑘−1 =
[d𝑇1,𝑘−1 ⋅ ⋅ ⋅ d𝑇ℎ,𝑘−1]𝑇; ŷ𝑘 ∈ R𝑚 is the estimated output of the
system and is calculated at each time instant 𝑘.

In order to obtain the system model for state estimation
(position and velocity estimation), only the translational
dynamics (�̈�) are considered from the equations of motion
of the tilt-rotor UAV with suspended load (3). Besides, since
the generalized coordinates 𝜉 are external variables for the
mechanical system (i.e., they do not shape the inertia matrix
of the UAV), the Coriolis and centripetal matrix does not
depend on these variables and their time-derivatives. There-
fore, it can be assumed that all known exerted forces along an
axis are grouped into a single component (inertia, Coriolis,
and centripetal forces due to existing coupling between the
translational dynamics and the remaining generalized coor-
dinates, the gravity force, and the generalized control input
forces), compounding the vector TI = [𝑇I

𝑥 𝑇I
𝑦 𝑇I

𝑧 ]𝑇,
which is function of the aircraft and load orientation (𝜂, �̇�,
𝛼, �̇�, 𝛾, and �̇�). For instance, on the 𝑥-axis it is possible to use
the expression �̈� = 𝑇I

𝑥 /𝑚 + 𝑇I
𝑑𝑥/𝑚, where 𝑇I

𝑥 is the known
translational force along the axis 𝑥 expressed in the inertial
frame, assuming that all angular positions and velocities are
measured with sampling time 𝜏𝑠, 𝑇I

𝑑𝑥 is the unknown net
disturbance force along the same axis, and 𝑚 is the body’s
mass. Note that, for the translational dynamics, the state-
space system is linear.

Since attitude values are obtained by measurements, it is
fair to say that 𝑇I

𝑥 , 𝑇I
𝑦 , and 𝑇I

𝑧 are not precisely known.
Therefore, choosing the state vector x = [𝑥 𝑦 𝑧 �̇� ̇𝑦 �̇�]𝑇,
with known input vector TI = [𝑇I

𝑥 𝑇I
𝑦 𝑇I

𝑧 ]𝑇 and

unknown input vector TI
𝑑 = [𝑇I

𝑑𝑥 𝑇I
𝑑𝑦 𝑇I

𝑑𝑧]𝑇, in which the
uncertainties of TI along with uncertainties of the estimated
disturbance force and modeling errors can be expressed by

the process noise vector w, the translational dynamics can
be written in the stochastic discrete-time domain with the
system’s sampling time 𝜏𝑠 through the following state-space
representation:

x𝑖+1 = [I3×3 𝜏𝑠I3×3
03×3 I3×3

] x𝑖 + [[
[
𝜏2𝑠2𝑚 I3×3𝜏𝑠𝑚 I3×3

]]
]
TI
𝑖

+ [[
[
𝜏2𝑠2𝑚 I3×3𝜏𝑠𝑚 I3×3

]]
]
TI
𝑑𝑖 + w𝑖,

(60)

where w𝑖 = [𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6]𝑇 is the process noise
vector at instant 𝑖. Thus, the matrices A, B, and G of (58) are
function of the sampling time 𝜏𝑠 and can be extracted from
(60). Further, matrices A𝑇𝑠

, B𝑇𝑠 , and G𝑇𝑠
are easily obtained

from (60) and, by assumption, C = I6×6.
In addition, the unknown inputs are estimated once at

each instant of the sensors’ measurement and are denoted
by 𝑑𝑘−1|𝑘. When using (59) to estimate x̂𝑘|𝑘−1, the vector of
unknown inputs

→
d 𝑘−1 possesses its terms equal to d𝑘−1|𝑘 for

all 𝑖 = 1, . . . , ℎ. Therefore, G𝑇𝑠

→
d 𝑘−1 = (∑ℎ−1

𝑗=0 A
𝑗G) 𝑑𝑘−1|𝑘, in

which

A𝑗 = [I3×3 𝑗 ⋅ 𝜏𝑠I3×3
03×3 I3×3

] , (61)

A𝑗 ⋅ G = [[
[
(2𝑗 + 1) 𝜏2𝑠2𝑚 I3×3𝜏𝑠𝑚 I3×3

]]
]
. (62)

Thus, ∑ℎ−1
𝑗=0 A

𝑗G can be obtained by calculating the summa-
tions∑ℎ−1

𝑗=0 (2𝑗+1)(𝜏2𝑠 /2𝑚)I3×3 and∑ℎ−1
𝑗=0 (𝜏𝑠/𝑚)I3×3 separately.

Besides, noting that∑ℎ−1
𝑗=0 (2𝑗 + 1) is the sum of the first ℎ odd

numbers, it is given by ∑ℎ−1
𝑗=0 (2𝑗 + 1)(𝜏2𝑠 /2𝑚) = (ℎ𝜏𝑠)2/2𝑚.

Otherwise, since ℎ = 𝑇𝑠/𝜏𝑠, then ℎ𝜏𝑠 = 𝑇𝑠 and∑ℎ−1
𝑗=0 A

𝑗G = G,
where G is equal to G except that 𝜏𝑠 is substituted by 𝑇𝑠.
Therefore, it can be said that G𝑇𝑠

→
d 𝑘−1 = G𝑑𝑘−1|𝑘.

Now, considering models (58) and (59), the LKFUI will
use a three-step algorithm, which is described below.

Initialization. Initial estimates are assumed for x̂0|0, d̂0|0 and
their uncertainties. Every time that the predictor assimilates
new measurements, x̂𝑖=0,𝑘 is initialized as

x̂𝑖=0,𝑘 = x̂𝑘|𝑘. (63)

Prediction
(i) Calculate x̂𝑖,𝑘 using the controller’s sampling fre-

quency 𝜏𝑠, for 𝑖 = 1, 2, . . . , 𝑇𝑠/𝜏𝑠
x̂𝑖,𝑘 = A𝑥𝑖−1|𝑘 + Bu𝑖−1|𝑘 + Gd̂𝑘−1|𝑘. (64)
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Table 1: System parameters.

Variable Value Variable Value (Kg⋅m2)𝛽 5∘ 𝐼1𝑥𝑥 0.01902947𝑙 0.5m 𝐼1𝑦𝑦 0.00881577
𝑔 9.81m/s2 𝐼1𝑧𝑧 0.01747731𝑚1 1.402Kg 𝐼1𝑥𝑦 0.00002074
𝑚2, 𝑚3 0.1566Kg 𝐼1𝑥𝑧 −0.00087669𝑚4 0.05 Kg 𝐼1𝑦𝑧 0.00000808
𝑑1 (6.72, 0.342, −78.9)mm 𝐼2𝑥𝑥, 𝐼3𝑥𝑥 0.00004223𝑑2 (0, −247, 123)mm 𝐼2𝑦𝑦, 𝐼3𝑦𝑦 0.00004096
𝑑3 (0, 247, 123)mm 𝐼2𝑧𝑧, 𝐼3𝑧𝑧 0.00002658𝑘𝑑 0.0179m 𝐼4𝑥𝑥, 𝐼4𝑦𝑦 0.00000264
𝜇𝛾 0.005N⋅s/m 𝐼4𝑧𝑧 0.00000264

(ii) Assign x̂𝑘+1|𝑘 = x̂𝑖=𝑇𝑠/𝜏𝑠 ,𝑘.

Correction

(i) Calculate ŷ𝑘+1|𝑘 given x̂𝑘+1|𝑘:

ŷ𝑘+1|𝑘 = Cx̂𝑘+1|𝑘. (65)

(ii) Calculate x̂𝑘+1|𝑘+1 given x̂𝑘+1|𝑘, y𝑘+1 and their respec-
tive covariance:

x̂𝑘+1|𝑘+1 = x̂𝑘+1|𝑘 + L𝑘+1 (y𝑘+1 − ŷ𝑘+1|𝑘) . (66)

(iii) Calculate the estimation of the disturbance d̂𝑘|𝑘+1 as
follows:

d̂𝑘|𝑘+1 = (G𝑇

𝑘G𝑘)−1G𝑇

𝑘L𝑘+1 (y𝑘+1 − ŷ𝑘+1|𝑘) . (67)

(iv) Increment 𝑘 and then go back to the Prediction step.

The filter gain L𝑘 ∈ R𝑛×𝑚 must be chosen such that it
minimizes the cost function J𝑘(L𝑘) ≜ E[(x𝑘−x̂𝑘|𝑘)𝑇(x𝑘−x̂𝑘|𝑘)]
subject to the constraint L𝑘E𝑘 = F𝑘, where E𝑘 and F𝑘 solve the
problem of the LKFUI when they are given by E𝑘 = CG and
F𝑘 = G [23].

Consider the forecast error e𝑘|𝑘−1 ≜ x𝑘− x̂𝑘|𝑘−1, the innova-
tion ^𝑘|𝑘−1 ≜ y𝑘− ŷ𝑘|𝑘−1, the data-assimilation error e𝑘|𝑘 ≜ x𝑘−
x̂𝑘|𝑘, the forecast error covariance P𝑥𝑥𝑘|𝑘−1 ≜ E[e𝑘|𝑘−1e𝑇𝑘|𝑘−1], the
innovation covariance P𝑦𝑦𝑘|𝑘−1 ≜ E[^𝑘|𝑘−1^𝑇𝑘|𝑘−1], and the cross
covariance P𝑥𝑦𝑘|𝑘−1 ≜ E[e𝑘|𝑘−1^𝑇𝑘|𝑘−1]. From the equations of
filter presented in the LKFUI algorithm, the data-assimilation
error covariance P𝑥𝑥𝑘|𝑘 is given by [23]

P𝑥𝑥𝑘|𝑘 ≜ E [e𝑘|𝑘e𝑇𝑘|𝑘]
= P𝑥𝑥𝑘|𝑘−1 − L𝑘 (P𝑥𝑦𝑘|𝑘−1)𝑇 − P𝑥𝑦𝑘|𝑘−1L

𝑇
𝑘 + L𝑘P

𝑦𝑦

𝑘|𝑘−1L
𝑇
𝑘 ,

(68)

where P𝑥𝑥𝑘|𝑘−1 = A𝑇𝑠
P𝑥𝑥𝑘−1|𝑘−1A

𝑇
𝑇𝑠
+Q, P𝑦𝑦𝑘|𝑘−1 = CP𝑥𝑥𝑘|𝑘−1C

𝑇 + R𝑘,
and P𝑥𝑦𝑘|𝑘−1 = P𝑥𝑥𝑘|𝑘−1C

𝑇.

For convenience, the following terms are defined as E𝐿𝑘 ≜(E𝑇𝑘E𝐾)−1E𝑇𝑘 , Ω𝑘⊥ ≜ I𝑚×𝑚 − Ω𝑘, K𝑘 ≜ P𝑥𝑦𝑘|𝑘−1(P𝑦𝑦𝑘|𝑘−1)−1, and
Ω𝑘 ≜ E𝑘[E𝑇𝑘 (P𝑦𝑦𝑘|𝑘−1)−1E𝑘]−1E𝑇𝑘 (P𝑦𝑦𝑘|𝑘−1)−1.

The gain L𝑘 that solves the optimization problem is given
by [23]

L𝑘 = K𝑘Ω𝑘⊥ + F𝑘E
𝐿
𝑘Ω𝑘. (69)

The data-assimilation error covariance is then given by the
Riccati equation

P𝑥𝑥𝑘|𝑘 = P𝑥𝑥𝑘|𝑘−1 − P𝑥𝑦𝑘|𝑘−1 (P𝑦𝑦𝑘|𝑘−1)−1 (P𝑥𝑦𝑘|𝑘−1)𝑇
+ (F𝑘E𝐿𝑘Ω𝑘)P𝑦𝑦𝑘|𝑘−1 (F𝑘E𝐿𝑘Ω𝑘)𝑇 − (Δ1,𝑘 + Δ𝑇1,𝑘)
+ [P𝑥𝑦𝑘|𝑘−1 (P𝑦𝑦𝑘|𝑘−1)−1Ω𝑘]
⋅ P𝑦𝑦𝑘|𝑘−1 [P𝑥𝑦𝑘|𝑘−1 (P𝑦𝑦𝑘|𝑘−1)−1Ω𝑘]𝑇 ,

(70)

where Δ1,𝑘 ≜ P𝑥𝑦𝑘|𝑘−1(P𝑦𝑦𝑘|𝑘−1)−1Ω𝑘P𝑦𝑦𝑘|𝑘−1Ω𝑇𝑘 (F𝑘E𝐿𝑘)𝑇.
4. Simulations Results and Analysis

This section shows simulation results carried out to analyze
the performance of the proposed nonlinear control strategy
with swing-free load and two control loops (NLLS-2L),
which was designed for the tilt-rotor UAV with suspended
load in the presence of unknown disturbances, parametric
uncertainties, unmodeled dynamics, and noisy measure-
ments. Simulations were performed using the UAV model
parameters of Table 1. The simulations considered that the
model’s masses𝑚𝑖 and inertia tensors 𝐼𝑖, for 𝑖 = 1, 2, 3, 4, had
all uncertainties ranging from −30% to 30% of their nominal
values. The thrusters’ inputs were bounded to work between
the range from 0N to 17N, and the rotors’ input torques
were bounded between −1N⋅m and 1N⋅m (these values were
chosen so as to match commercial specifications for those
actuators).

The simulated system assumes the position and speed
sensors with sampling period equal to 𝑇𝑠 = 0.1 s and
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the controller’s sampling rate is equal to 𝜏𝑠 = 0.01 s. The
simulation tool used a fixed-step simulation with period 𝜏𝑠
and the measures pass through a zero-order-holder with
period 𝑇𝑠. Furthermore, positioning system measurements
are assumed to have Gaussian distribution with accuracy of3𝜎 = ±0.15m (this value is equivalent to the specifications
of the Novatel OEMStar GPS receiver, which is used in our
project) and a speed sensor with accuracy of 3𝜎 = ±0.12m/s
(specification of the DJI Guidance system), where 𝜎 is the
standard deviation. The translational forces 𝑇I

𝑥 , 𝑇I
𝑦 , and

𝑇I
𝑧 are estimated using the tilt-rotor model and the applied

control input, and Gaussian noise with 3𝜎 = ±1N is added to
their values. The matrixQ is given by

Q = B𝑇𝑠B
𝑇
𝑇𝑠
. (71)

In order to evaluate the performance of the control
system in damping the load swing, the NLLS-2L controller
is compared with another control strategy that only assumes
the load as a disturbance to the system. This controller is
named here as nonlinear controller for trajectory tracking
with two control loops (NLPT-2L), which makes use of the
same controller designed for the inner-loop, while for the
outer-loop the linear control laws (49) and (50) are replaced
simply by PID controllers for the motion of 𝑥 and 𝑦 given by

V𝑥 = �̈�Ref + 𝐾𝑑𝑥
̇𝑒𝑥 + 𝐾𝑝𝑥

𝑒𝑥 + 𝐾𝐼𝑥
∫ 𝑒𝑥d𝑡, (72)

V𝑦 = ̈𝑦Ref + 𝐾𝑑𝑦
̇𝑒𝑦 + 𝐾𝑝𝑦

𝑒𝑦 + 𝐾𝐼𝑦
∫ 𝑒𝑦d𝑡. (73)

By using the NLPT-2L controller and linearizing the system
in the neighborhood of the equilibrium point it is possible
to verify that 𝛾1 and 𝛾2 are stable if there are drag terms
multiplying ̇𝛾1 and ̇𝛾2 in matrix 𝜇. If, otherwise, these
terms are null, then the load swings uninterruptedly (𝛾1 and𝛾2 are marginally stable). Since drag forces are present in
mechanical systems at atmospheric conditions, it is fair to
state that these terms are nonnull, implying stability of the
whole system in a neighborhood of the equilibrium point.

In addition, a third control strategy is also compared
with the proposed one, which makes use of the nonlinear
cascade controller with three loops (NLLS-3L) presented in
[22] combined with the LKFUI described in Section 3.4. For
the NLLS-3L strategy, the linear controllers of the outermost
loop and altitude are synthesized with the same parameters
of the NLLS-2L. However, since the attitude and tiltable
dynamics are controlled by two control loops in the NLLS-
3L strategy presenting high coupling, their gains are obtained
similarly with the tuning used in [22].

The closed-loop requirements used for the linear mixed
H2/H∞ controllers synthesis with pole placement con-
straints are presented in Table 2, for the LMI regions
(55)–(57), and Table 3, for the weighting matrices ofH2 and
H∞ norms. From these requirements, the mixing H2/H∞

optimization problem described in Section 3.3 was solved
using the Yalmip toolbox [30] (version R20170626) with
the Sedumi solver, yielding the controllers gains for each
linearized dynamic.

Table 2: Closed-loop pole placement requirements for theNLLS-2L
controller.

Variable 𝛼 𝑐 𝑟 𝜑𝑥 −1 0 −3 𝜋/36𝑦 −1 0 −3 𝜋/36𝑧 −1.1 0 −80 𝜋/36𝜙 −7 −7 −110 𝜋/4𝜃 −7 −7 −110 𝜋/4𝜓 −3 −3 −20 𝜋/10̇𝑑I𝑥 −1.5 0 −2 𝜋/20̇𝑑I𝑦 −1.5 0 −2 𝜋/20
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Figure 3: System disturbances for the simulation.
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Figure 4: e𝑥(𝑖|𝑘) in function of time for NLLS-3L, NLLS-2L, and
NLPT-2L simulations.

For the sake of comparison, the simulations of NLLS-
2L, NLPT-2L, and NLLS-3L took place with exactly the
same noise in function of time (same source). The external
disturbance profiles applied for the three axis are shown in
Figure 3. Figure 4 shows the position estimation error in the
direction 𝑥 for the ten first seconds of all simulations. It is
possible to see that the estimation for NLLS-2L was not much
different than the ones for NLPT-2L and NLLS-3L. It can
also be seen that LKFUI was able to converge the position
estimation, with a priori estimation error bounded to be±3.81 cm with 99.8% of confidence or, likewise, bounded to
be ±2.54 cm with 95% of confidence. Figure 5 shows the
disturbance estimation in the 𝑧 direction for the NLLS-2L
simulation, which is estimated with 𝜎 = 0.92N as standard
deviation. The position estimation for 𝑦 and 𝑧 and the
disturbance estimation for 𝑑𝑥 and 𝑑𝑦 present similar profile
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Table 3: Weighting matrices ofH2 andH∞ norms for the NLLS-2L controller.

Variable Cz Duz D
𝜋z{{{{{

𝑥
𝑦 diag (0.1 1.0 1/(2)2) [0.5 0.1 0.1]𝑇 [0.1 0.1 1]𝑇

{{{{{
𝑧
𝜓 diag(0.1 1.0 1/(2)2 1/(0.2)2 1/(0.3)2) [0.5 0.1 0.1 0.1 0.1]𝑇 [0.1 0.1 0.1 0.1 1]𝑇

{{{{{
𝜙
𝜃 diag(1500 1000 1/(0.5)2 1/(0.7)2 1/(0.3)2) [0.05 0.001 0.1 0.1 1.3]𝑇 [0.3 0.01 0.01 1.0 1.0]𝑇

{{{{{
̇𝑑I𝑥
̇𝑑I𝑦

diag(0.1 1.0) [0.5 0.1]𝑇 [0.1 0.1]𝑇

Table 4: Root-mean-square-error comparison between NLPT-2L, NLLS-2L, and NLLS-3L.

NLPT-2L NLLS-2L NLLS-3L RMSENLPT-2L/RMSENLLS-2L RMSENLLS-3L/RMSENLLS-2L

RMSE𝑥 (m) 5,58 ⋅ 10−2 6,54 ⋅ 10−2 1,09 ⋅ 10−1 0.85 1,67
RMSE𝑦 (m) 3,96 ⋅ 10−2 5,78 ⋅ 10−2 1,04 ⋅ 10−1 0,68 1,79
RMSE𝑧 (m) 6,37 ⋅ 10−2 6,35 ⋅ 10−2 4,40 ⋅ 10−2 1,00 0,69
RMSE𝜓 (rad) 2,02 ⋅ 10−1 2,02 ⋅ 10−1 1,23 ⋅ 10−1 0,99 0,60
RMSE ̇𝑑I𝑥

(m/s) 3,45 ⋅ 10−1 1,46 ⋅ 10−1 2,48 ⋅ 10−1 2,36 1,70
RMSE ̇𝑑I𝑦

(m/s) 2,31 ⋅ 10−1 1,56 ⋅ 10−1 2,31 ⋅ 10−1 1,47 1,47

Estimated External Disturbance
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Figure 5: Disturbance estimation in function of time for the NLLS-
2L simulation.

of estimation convergence with respect to the estimation of 𝑥
and 𝑑𝑧, respectively.

Figure 6 shows the results of the simulated trajectories.
The aircraft started on the point 𝑥 = 0, 𝑦 = 0 and its
initial values for 𝛾1 and 𝛾2 were both 𝜋/10 and −𝜋/10,
respectively. Both NLLS-2L and NLLS-3L strategies reduced
the load’s swing, but the controller with three loops presented
an overall worse trajectory tracking. On the other hand,
the NLLS-2L presented a trajectory tracking error for 𝑥,𝑦, and 𝑧 close to the one obtained using NLPT-2L, as it
can be observed in Figure 7. This figure also shows that𝛾1 and 𝛾2 presented greatly reduced swing when using the
NLLS controllers, with both two and three loops. The time
evolution of the remaining generalized coordinates is shown
in Figure 8, showing that they converge to operating points
without destabilizing throughout the simulation. Figure 9
shows the system’s control inputs.

Table 4 presents the root mean square error (RMSE) of
the aircraft’s trajectory with respect to its reference and the
RMSE of the load’s translational velocity with respect to the
aircraft for the control strategies. The NLLS-2L controller
presented 85% of the root mean square error on the direction𝑥 with respect to the NLPT-2L controller and 68% in the
direction 𝑦. The tracking errors for 𝑧 and 𝜓 were similar on
both controllers. The RMSE for the derivatives of the load
angles 𝛾1 and 𝛾2 presented an improvement of approximately136% for 𝛾1 and 47% for 𝛾2 when comparing NLLS-2L with
NLPT-2L.

The NLLS-2L controller presented a trajectory tracking
improvement of 67% of the root mean square error on the
direction𝑥with respect to theNLLS-3L controller and 79% in
the direction 𝑦. The tracking errors for 𝑧 and𝜓were better in
NLLS-3L, with an improvement of 31%and 40%, respectively.
The RMSE for the derivatives of the load angles 𝛾1 and 𝛾2
presented an improvement of approximately 70% for 𝛾1 and47% for 𝛾2 when comparing NLLS-2L with NLLS-3L.

Table 5 presents the Integrated Absolute Variation of the
Control signal (IAVU) index for all controllers. This index
evaluates the control effort and is given by

IAVU𝑖 = ∫𝑡𝑓
0

d𝑢id𝑡
 d𝑡, 𝑖 ∈ {𝑓𝑅, 𝑓𝐿, 𝜏𝛼𝑅 , 𝜏𝛼𝐿} . (74)

Table 5 indicates that the control efforts in NLPT-2L
and NLLS-2L are quite similar. In addition, the two-loop
strategies reduced the control effort over 300% for 𝑓𝑅 and 𝑓𝐿
when compared with the three-loop strategy. In addition, the
control effort for the tilting torques is greatly reduced in the
two-loop strategy with respect to the three-loop one.
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Table 5: IAVU index comparison between NLPT-2L, NLLS-2L, and NLLS-3L.

NLPT-2L NLLS-2L NLLS-3L IAVUNLPT-2L/IAVUNLLS-2L IAVUNLLS-3L/IAVUNLLS-2L

IAVU𝑓𝑅 2,359 ⋅ 104 2,349 ⋅ 104 1,091 ⋅ 105 1.004 4.642
IAVU𝑓𝐿 2,420 ⋅ 104 2,379 ⋅ 104 9,450 ⋅ 104 1.017 3.972
IAVU𝜏𝛼𝑅 1,401 ⋅ 103 1,403 ⋅ 103 2,127 ⋅ 103 0.998 1.515
IAVU𝜏𝛼𝐿 1,592 ⋅ 103 1,601 ⋅ 103 2,765 ⋅ 103 0.994 1.727
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Figure 6: Trajectory tracking of the aircraft for NLPT-2L, NLLS-2L, and NLLS-3L.

5. Conclusion

This paper provided a solution for the nonlinear control
problem of the tilt-rotor UAV with suspended load. The
proposed control strategy was able to stabilize the whole
system while tracking a desired trajectory in the presence of
external disturbances, parametric uncertainties, unmodeled
dynamics, and noisy measurements with lower sampling
frequency than the controller.

The state-space model that was used for the LKFUI
algorithm simplifies the dynamics of the tilt-rotor, since
the translational generalized coordinates (𝑥, 𝑦, and 𝑧) are
external variables. This way, there is no need to use a
nonlinear state estimation algorithm.

Simulation results were presented where the LKFUI
algorithm was able to estimate the disturbances and use its
information along with the aircraft translational forces so as
to estimate the system’s position while the position and speed
sensors do not provide new measurements. At the moment
that the sensors provide a new measurement, a correction
step is taken tomerge the information from themeasurement
alongwith the previous estimation. Consequently, the LKFUI
was able to reduce estimation error variability from ±0.15m
(positioning system’s measurement error) to approximately±0.0381m.

Three nonlinear control strategies were compared while
performing the task of trajectory tracking: NLPT-2L, NLLS-
2L, and NLLS-3L. NLLS strategies greatly reduce the load’s
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Figure 7: Tracking error and load swing on NLPT-2L, NLLS-2L, and NLLS-3L.

swing with respect to NLPT-2L (up to 147% improvement in
the RMSE sense) at the cost of worsening its tracking error
for 𝑥 and 𝑦 when subject to stronger changes in reference
(worsening up to 32% in the RMSE sense). However, even
though NLPT-2L performed better trajectory tracking than
NLLS-2L, it is not advised to be used since too much swing
of the load, especially for heavy loads, might destabilize
the aircraft or also cause the load to collide with the
environment.

In terms of control effort, NLLS-2L and NLPT-2L were
quite similar. On the other hand, these strategies largely
reduced the control effort when compared with NLLS-3L.
This is a compelling feature that motivates the abandoning
of the three-loop strategy in favor of NLLS-2L.

An interesting future work would be to reduce the
simplifications taken and also study the domain of attraction
of the designed controllers, since they were only analyzed
in the neighborhood of the equilibrium point. Another
important step is to implement the solutions in a real tilt-
rotor UAV to perform load transportation. This is expected
to be performed in the future by the researchers of the
ProVant project, whose research is presently carried out in
a partnership between the Brazilian universities UFMG and
UFSC.

Nomenclature

Symbols

0𝑛×𝑚: Zero matrix with 𝑛 lines and𝑚
columns

I𝑛×𝑛: Identity matrix of dimension 𝑛𝑘: Number of samples
x: State vector of 𝑛th order, where 𝑥𝑖,𝑖 = 1, . . . , 𝑛, x ∈ R𝑛

x0: Initial condition of x
xRef : Reference vector of the variable x

Model Notation

𝑓𝑅, 𝑓𝐿: Right and left rotors’ thrusts,
respectively𝜏𝛼𝑅 , 𝜏𝛼𝐿 : Tilting torque for the right and left
rotors, respectively

I: Fixed inertial frame
B: Moving body frame
C1: Frame rigidly attached to the main

body’s center of mass
C2: Frame rigidly attached to the right

rotor’s center of mass
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Figure 8: Body and tiltable mechanism angles on NLPT-2L, NLLS-2L, and NLLS-3L.

C3: Frame rigidly attached to the left
rotor’s center of mass

C4: Frame rigidly attached to the
suspended load’s center of mass

𝜉 = [𝑥I 𝑦I 𝑧I]𝑇: Translation between the origins of
framesI andB

𝜂 = [𝜙 𝜃 𝜓]𝑇: The main body attitude with respect
to frameB, described by Euler angles
with the roll-pitch-yaw convention𝛼𝑅, 𝛼𝐿: Tilt angles of the right and left rotors,
respectively𝛾1, 𝛾2: Degrees of freedom of the suspended
load𝛽: Constant rotation of right and left
rotors around 𝑥C𝑖 , for 𝑖 = 1, 2

dB𝑖 = [𝑑B𝑥𝑖 𝑑B𝑦𝑖 𝑑B𝑧𝑖 ]𝑇: Translation between the origins of
framesB andC𝑖, for 𝑖 = 1, 2, 3, 4𝑙: Length of the rigid rod

q ∈ R10: Generalized coordinates vector
p𝐴𝑖 : Point rigidly attached to frameC𝑖

represented in generic frame 𝐴
M(q): Inertia matrix
C(q, q̇): Coriolis and centripetal forces matrix
G(q): Gravitational force vector

F(q): Independent generalized input force
vector

Fext: External disturbance force vector
Fdrag: Drag force vector
𝜇: Drag coefficients matrix𝐾: Kinetic energy of the whole system𝐾𝑖: Kinetic energy of the 𝑖th body
kI𝑖 : Velocity of a point of body 𝑖 with

respect to frameI𝜌𝑖: Mass density of body 𝑖𝑚𝑖: Mass of the 𝑖th body
I𝑖: Inertia tensor of body 𝑖 with respect

to frameC𝑖

J𝑖: Inertia tensor of body 𝑖 expressed in
frameB𝑃: Potential energy of the whole system𝑃𝑖: Potential energy of the 𝑖th body

gI: Gravity vector with respect to frame
I𝑔𝑧: Gravity acceleration𝑏: Thrust coefficient of the rotors𝑘𝜏: Drag coefficient of the propellers

TI
𝜉 : Translational force vector expressed

in the inertial frame
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Figure 9: Inputs of the system using NLPT-2L, NLLS-2L, and NLLS-3L.

𝜏I𝜂 : Rotational torque vector expressed in
the inertial frame

Γ: System’s input vector
B(q): Force matrix (input coupling matrix).

Controllers Notation

q1: Inner generalized coordinates vector
q2: Outer generalized coordinates vector
f𝑞𝑖(x𝑞𝑖): Nonlinear drift vector field of the

dynamics for qi, 𝑖 ∈ {1, 2}
g𝑢𝑞𝑖(x𝑞𝑖): Nonlinear steering vector field of the

dynamics for qi, 𝑖 ∈ {1, 2}
g𝑑𝑞𝑖(x𝑞𝑖): Nonlinear external steering vector

field of the dynamics for qi, 𝑖 ∈ {1, 2}
h𝑞𝑖(x𝑞𝑖): Nonlinear output vector field of the

dynamics for qi, 𝑖 ∈ {1, 2}
𝛿qi : Vector including unmodeled

dynamics and the unknown external
disturbances Fext, 𝑖 ∈ {1, 2}

kq𝑖: Additional control input vector,𝑖 ∈ {1, 2}

𝜋𝑖(𝛿q𝑖): Function of the residual terms due to
model simplifications, unmodeled
dynamics, and unknown external
disturbances, 𝑖 ∈ {1, 2}𝜎(𝑝): Saturation function

e𝑖: Error vector, 𝑖 ∈ {𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓}Υ1, Υ2: Intermediary input values for the
outer-loop controller

ũ𝑖: Control effort vector,𝑖 ∈ {𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓}
A𝑖: Linear state matrix,𝑖 ∈ {𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓}
B𝑢𝑖 : Linear input matrix,𝑖 ∈ {𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓}
B𝜋𝑖 : Linear external input matrix,𝑖 ∈ {𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓}
K𝑖: Control matrix, 𝑖 ∈ {𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓}𝛾: Attenuation level of theH∞ problem
H𝜋𝑖𝑧𝑖

(𝑠): Transfer function between the
external disturbance 𝜋𝑖 and the cost
variable z𝑖‖H𝜋𝑖𝑧𝑖

(𝑠)‖∞: H∞-norm of the transfer function
H𝜋𝑖𝑧𝑖

(𝑠)
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‖hi(𝑡)‖2: H2-norm of the transfer function
H𝜋𝑖𝑧𝑖

(𝑠)
C𝑧𝑖

,D𝑢𝑧𝑖
,D𝜋𝑧𝑖

: Weighting matrices.

State Estimation Notation

𝑇𝑠: Positioning system equipment’s
sampling time𝜏𝑠: Controller’s sampling time

w𝑘: Process noise
d𝑘: Unknown input vector
Q: Process noise’s covariance matrix
k𝑘: Measurement noise
R𝑘: Measurement noise’s covariance

matrix
E[⋅]: Expected value operation
L𝑘: Kalman Filter’s gain matrix
e𝑘|𝑘−1: Forecast error
^𝑘|𝑘−1: Innovation
e𝑘|𝑘: Data-assimilation error
P𝑥𝑥𝑘|𝑘−1: Forecast error covariance
P𝑦𝑦𝑘|𝑘−1: Innovation covariance

P𝑥𝑦𝑘|𝑘−1: Cross covariance
P𝑥𝑥𝑘|𝑘: Data-assimilation error covariance.
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